Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(12)2022 12 17.
Article in English | MEDLINE | ID: covidwho-2163629

ABSTRACT

BACKGROUND AND METHODS: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. RESULTS: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. CONCLUSIONS: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.


Subject(s)
Alphacoronavirus , Astroviridae , COVID-19 , Chiroptera , Herpesviridae , RNA Viruses , Animals , Astroviridae/genetics , Kenya/epidemiology , Phylogeny , Retroviridae , RNA Viruses/genetics , SARS-CoV-2
2.
Viruses ; 13(6)2021 06 04.
Article in English | MEDLINE | ID: covidwho-1282637

ABSTRACT

Bat species worldwide are receiving increased attention for the discovery of emerging viruses, cross-species transmission, and zoonoses, as well as for characterizing virus infections specific to bats. In a previous study, we investigated the presence of coronaviruses in faecal samples from bats at different locations in Denmark, and made phylogenies based on short, partial ORF1b sequences. In this study, selected samples containing bat coronaviruses from three different bat species were analysed, using a non-targeted approach of next-generation sequencing. From the resulting metagenomics data, we assembled full-genome sequences of seven distinct alphacoronaviruses, three astroviruses, and a polyomavirus, as well as partial genome sequences of rotavirus H and caliciviruses, from the different bat species. Comparisons to published sequences indicate that the bat alphacoronaviruses belong to three different subgenera-i.e., Pedacovirus, Nyctacovirus, and Myotacovirus-that the astroviruses may be new species in the genus Mamastrovirus, and that the polyomavirus could also be a new species, but unassigned to a genus. Furthermore, several viruses of invertebrates-including two Rhopalosiphum padi (aphid) viruses and a Kadipiro virus-present in the faecal material were assembled. Interestingly, this is the first detection in Europe of a Kadipiro virus.


Subject(s)
Alphacoronavirus/genetics , Astroviridae/genetics , Chiroptera/virology , Genome, Viral , Whole Genome Sequencing , Alphacoronavirus/classification , Alphacoronavirus/isolation & purification , Animals , Astroviridae/classification , Astroviridae/isolation & purification , Denmark , Feces/virology , Genomics/methods , Open Reading Frames , Phylogeny
3.
J Virol Methods ; 288: 114012, 2021 02.
Article in English | MEDLINE | ID: covidwho-907187

ABSTRACT

In this study, a SYBR Green I-based real-time reverse transcription-polymerase chain reaction (RT-PCR) was developed for the clinical diagnosis of feline astroviruses (FeAstVs). Specific primers were designed based on the conserved region of the FeAstV ORF1b gene. Experiments for specificity, sensitivity, and repeatability of the assay were carried out. In addition, the assay was evaluated using clinical samples. Specificity analysis indicated that the assay showed negative results with samples of Feline Parvovirus, Feline Herpesvirus, Feline Calicivirus, Feline Bocavirus, and Feline Coronavirus, indicating good specificity of the assay. Sensitivity analysis showed that the SYBR Green I-based real-time RT-PCR method could detect as low as 3.72 × 101 copies/µL of template, which is 100-fold more sensitive compared to the conventional RT-PCR. Both intra-assay and inter-assay variability were lower than 1 %, indicating good reproducibility. Furthermore, an analysis of 150 fecal samples showed that the positive detection rate of SYBR Green I-based real-time RT-PCR was higher than that of the conventional RT-PCR, indicating the high reliability of the method. The assay is cheap and effective. Therefore, it could provide support for the detection of FeAstV in large-scale clinical testing and epidemiological investigation.


Subject(s)
Astroviridae/genetics , Cat Diseases/diagnosis , Cat Diseases/virology , Organic Chemicals , Real-Time Polymerase Chain Reaction , Animals , Benzothiazoles , Cats , Diamines , Quinolines , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL